DATA STRUCTURES
USING “C”

For
BCA Part-11 (Session 2018-21) Students

ANANT KUMAR
MCA, M. Phil, M. Tech.
Faculty Member
Department of Computer Science
J. D. Women’s College, Patna

Chapter 2 : Recursion

Recursion is the process of defining something in terms of itself. Recursive function is
a function that calls itself to solve a problem. Every recursive solution has two major
cases:

(i) Base case

(if) Recursive Case

Base case — A problem to be solved directly without making any further call to the
same function.

Recursive case — In this case First, the problem is divided into sub-parts. Second, the
function call itself but with sub-parts of the problem obtained in the first step. Third,
the result is obtained by combining the solution of simpler sub-parts.

Differences between recursion and iteration

Iteration Recursion
Iteration explicitly user a Recursion achieves repetition through
repetition structure. repeated function calls.
Iteration terminates when the Recursion terminates when a base case Is
loop continuation. recognized.
Iteration keeps modifying the counter | Recursion keeps producing simple
until the loop continuation versions of the original problem until
condition fails. the base case is reached.
Iteration normally occurs within a loop | Recursion causes another copy of the
so the extra memory assigned function and hence a considerable
is omitted. memory space’s occupied.
It reduces the processor’s It increases the processor’s operating
operating time. time.

Examples
1. Write a recursive function to find out the factorial of give number.

#include <stdio.h>
int factorial (int);
main()

int num, fact;
printf (“Enter a positive integer value: ");
scanf (“%d”, &num);

fact = factorial (num);
printf (*\n Factorial of %d =%d\n", num, fact);

Lecture Notes
Page 2

int factorial (int n)

int f;
if (n==0] n==1)
return (1);
else
f= n * factorial (n-1);

return (f);

Dry run of above function call —
When the factorial function is first called with, say, N =5, here is what

happens: FUNCTION:
Does N =0? No
Function Return Value =5 * factorial (4)

At this time, the function factorial is called again, with N =

4. FUNCTION:
Does N =07 No _
Function Return Value = 4 * factorial (3)

At this time, the function factorial is called again, with N =

3. FUNCTION:
Does N =07 No
Function Return Value = 3 * factorial (2)

At this time, the function factorial is called again, with N =

2. FUNCTION:
Does N =07 No
Function Return Value = 2 * factorial (1)

At this time, the function factorial is called again, with N =

1. FUNCTION:
Does N =07 No _
Function Return Value = 1 * factorial (0)

At this time, the function factorial is called again, with N =

0. FUNCTION:
Does N =07 Yes
Function Return Value = 1

Sl = 5*41 = 5*4*31 = 5*4*3*21 = 5*4*3*2*11 = 5*4*3*2*1*1 =120

2. Write a recursive function for the Towers of Hanoi.

The rules to be followed in moving the disks from tower 1 tower 3 using tower 2 are
as follows:

« Only one disk can be moved at a time.
« Only the top disc on any tower can be moved to any other tower.
« A larger disk cannot be placed on a smaller disk.

: Tower 1 I Tower 2 ‘ Tower 3

Final result is

I Tower 1 I Tower 2 g Tower 3

#include <stdio.h>
#include
<conio.h>

void towersofhanoi (int n, char *a, char *b, char *c);
int cnt=0;
int main (void)

intn;

printf("Enter number of discs:

"); scanf(""%d",&n);

towersofhanoi (n, "Tower 1", "Tower 2", "Tower
3"); getch();

Lecture Notes
Page 4

void towersofhanoi (int n, char *a, char *b, char *c)

{ .
if (n==1)
{
++cnt;
printf (*\n%5d: Move disk 1 from %s to %s", cnt, a, C);
return;
}
else
{
towersofhanoi (n-1, a, c, b);
++Cnt;
printf ("\n%5d: Move disk %d from %s to %s", cnt, n, a, ¢);
towerofhanoi (n-1, b, a, ¢);
return;
}
}

Dry run of above function call -
RUN 1:
Enter the number of discs: 3

Move disk 1 from tower 1 to tower
Move disk 2 from tower 1 to tower
Move disk 1 from tower 3 to tower
Move disk 3 from tower 1 to tower
Move disk 1 from tower 2 to tower

Move disk 2 from tower 2 to tower
Move disk 1 from tower 1 to tower

WwE whhow

RUN 2:

Enter the number of discs: 4

1: Move disk 1 from tower 1 to tower 2.
2: Move disk 2 from tower 1 to tower 3.
3: Move disk 1 from tower 2 to tower 3.
4. Move disk 3 from tower 1 to tower 2.
5. Movedisk 1 fromtower 3 to tower 1.
6: Movedisk 2 from tower 3 to tower 2.
7: Movedisk 1 fromtower 1 to tower 2.

8: Movedisk 4 fromtower 1 to tower 3.
9: Movedisk 1 fromtower 2 to tower 3.
10: Move disk 2 from tower 2 to tower 1.
11: Movedisk 1 from tower 3 to tower 1.
12: Move disk 3 from tower 2 to tower 3.
13: Movedisk 1 fromtower 1 to tower 2.
14: Move disk 2 from tower 1 to tower 3.
15: Move disk 1 from tower 2 to tower 3.

3. Write a recursive function to print Fibonacci series up to n terms.
01123581321.........

#include <stdio.h>

int fibo(int);

void main()

{ - .
int i,num;
clrscr ();
printf(“Enter terms”);
scanf(“%d”, &num);
for(i=0;i<=num;i++)

printf (“%d 7, fibo(i));

}
int fibo(int n)
t
int X;
if (n==0]| n==1)
return n;
x=fibo(n-1) + fibo(n-2);
return (X);
}

Lecture Notes
Page 6

Dry run of above function call -

Fib(n)=nifn=0o0orn=1
Fib (n) = fib (n-1) + fib (n-2) for n >=2

fib(5) = fib(4) + fib(3)

fib(3) + fib(2) + fib(3)

fib(2) + fib(1) + fib(2) + fib(3)

fib(1) + fib(0) + fib(1) + fib(2) + fib(3)

1+ 0+ 1 +fib(1) + fib(0) + fib(3)

1+0+1+1+0+fib(2) + fib(1)

1+0+1+1+0+fib(1) + fib(0) + fib(2)

1+0+1+1+0+1+0+1=5

Lecture Notes
Page 8

