
DATA STRUCTURES  

USING “C” 

 

 

 

For 

BCA Part-II (Session 2018-21) Students  

 
 

 

 

 

 

BY 
 

 

 

ANANT KUMAR 

MCA, M. Phil, M. Tech. 

Faculty Member 

Department of Computer Science 

J. D. Women’s College, Patna 

  



Lecture Notes 
 Page 2 
 

 

Chapter 2 : Recursion 

 

Recursion is the process of defining something in terms of itself. Recursive function is 

a function that calls itself to solve a problem. Every recursive solution has two major 

cases: 

(i) Base case 

(ii) Recursive Case 

 

Base case – A problem to be solved directly without making any further call to the 

same function. 

 

Recursive case – In this case First, the problem is divided into sub-parts. Second, the 

function call itself but with sub-parts of the problem obtained in the first step. Third, 

the result is obtained by combining the solution of simpler sub-parts.  

 

Differences between recursion and iteration 

 

Iteration Recursion 

Iteration explicitly user a 
repetition structure. 

Recursion achieves repetition through 
repeated function calls. 

Iteration terminates when the 
loop continuation. 

Recursion terminates when a base case is 
recognized. 

Iteration keeps modifying the counter 
until the loop continuation 
condition fails. 

Recursion keeps producing simple 
versions of the original problem until 
the base case is reached. 

Iteration normally occurs within a loop 
so the extra memory assigned 
is omitted. 

Recursion causes another copy of the 
function and hence a considerable 
memory space’s occupied. 

It reduces the processor’s 
operating time. 

It increases the processor’s operating 
time. 

 

 

Examples 
 

1. Write a recursive function to find out the factorial of give number. 

 

#include <stdio.h>  

int factorial (int); 

main() 
{ 

int num, fact; 

printf (“Enter a positive integer value: ");  

scanf (“%d”, &num); 

fact = factorial (num); 
printf ("\n Factorial of %d =%d\n", num, fact); 

} 
 

 



 

int factorial (int n) 
{ 

int f;  

if (n ==0 || n==1) 

return (1); 

else 

f= n * factorial (n-1); 

 

return (f); 
} 

 

   

     

 Dry run of above function call – 

When the factorial function is first called with, say, N = 5, here is what 

happens: FUNCTION: 

Does N = 0? No 

Function Return Value = 5 * factorial (4) 

At this time, the function factorial is called again, with N = 

4. FUNCTION: 
Does N = 0? No 
Function Return Value = 4 * factorial (3) 

At this time, the function factorial is called again, with N = 

3. FUNCTION: 

Does N = 0? No 

Function Return Value = 3 * factorial (2) 

At this time, the function factorial is called again, with N = 

2. FUNCTION: 

Does N = 0? No 

Function Return Value = 2 * factorial (1) 

At this time, the function factorial is called again, with N = 

1. FUNCTION: 
Does N = 0? No 
Function Return Value = 1 * factorial (0) 

At this time, the function factorial is called again, with N = 

0. FUNCTION: 

Does N = 0? Yes 

Function Return Value = 1 

 

5! = 5*4! = 5*4*3! = 5*4*3*2! = 5*4*3*2*1! = 5*4*3*2*1*1 =120 
 

 



Lecture Notes 
 Page 4 
 

 

 

2. Write a recursive function for the Towers of Hanoi. 

 

The rules to be followed in moving the disks from tower 1 tower 3 using tower 2 are 

as follows: 

 
 Only one disk can be moved at a time. 
 Only the top disc on any tower can be moved to any other tower. 
 A larger disk cannot be placed on a smaller disk. 

 

 
 

 

Final result is 

 
 

 

#include <stdio.h> 

#include 

<conio.h> 

 

void towersofhanoi (int n, char *a, char *b, char *c); 

int cnt=0; 

int main (void) 
{ 

int n; 

printf("Enter number of discs: 

"); scanf("%d",&n); 

towersofhanoi (n, "Tower 1", "Tower 2", "Tower 

3"); getch(); 

} 

 

 

 

 

 



 

 

 

void towersofhanoi (int n, char *a, char *b, char *c) 
{ 

 if (n == 1) 

{ 

 

   ++cnt; 

printf ("\n%5d: Move disk 1 from %s to %s", cnt, a, c); 

return; 

  } 

  else 

  { 

   towersofhanoi (n-1, a, c, b); 
++cnt; 
printf ("\n%5d: Move disk %d from %s to %s", cnt, n, a, c); 

towerofhanoi (n-1, b, a, c); 

return; 

  } 

   } 

 

Dry run of above function call – 

 

RUN 1: 

 

Enter the number of discs: 3 

 

1: Move disk 1 from tower 1 to tower 3. 

2: Move disk 2 from tower 1 to tower 2. 

3: Move disk 1 from tower 3 to tower 2. 

4: Move disk 3 from tower 1 to tower 3. 

5: Move disk 1 from tower 2 to tower 1. 

6: Move disk 2 from tower 2 to tower 3. 

7: Move disk 1 from tower 1 to tower 3. 

 

RUN 2: 

 

Enter the number of discs: 4 

 

1: Move disk 1 from tower 1 to tower 2. 

2: Move disk 2 from tower 1 to tower 3. 

3: Move disk 1 from tower 2 to tower 3. 

4: Move disk 3 from tower 1 to tower 2. 

5: Move disk 1 from tower 3 to tower 1. 

6: Move disk 2 from tower 3 to tower 2. 

7: Move disk 1 from tower 1 to tower 2. 



Lecture Notes 
 Page 6 
 

8: Move disk 4 from tower 1 to tower 3. 

9: Move disk 1 from tower 2 to tower 3. 

10: Move disk 2 from tower 2 to tower 1. 

11: Move disk 1 from tower 3 to tower 1. 

12: Move disk 3 from tower 2 to tower 3. 

13: Move disk 1 from tower 1 to tower 2. 

14: Move disk 2 from tower 1 to tower 3. 

15: Move disk 1 from tower 2 to tower 3. 

 

3. Write a recursive function to print Fibonacci series up to n terms. 

0 1 1 2 3 5 8 13 21 . . . . . . . . . 

 

#include <stdio.h> 

int fibo(int);  

void main() 

{ 

      int i,num;  

   clrscr (); 

  printf(“Enter terms”); 

  scanf(“%d”, &num);   

  for(i=0;i<=num;i++) 

   printf (“%d ”, fibo(i)); 

} 

 

 int fibo(int n) 

 { 

  int x; 

if (n==0 | | n==1)  

return n; 

x=fibo(n-1) + fibo(n-2);  

return (x); 

 } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



fib(5) = fib(4) + fib(3) 

 

fib(3) + fib(2) + fib(3) 

fib(2) + fib(1) + fib(2) + fib(3) 

fib(1) + fib(0) + fib(1) + fib(2) + fib(3) 

 
1 + 0 + 1 + fib(1) + fib(0) + fib(3) 

 
1 + 0 + 1 + 1 + 0 + fib(2) + fib(1) 

 
1 + 0 + 1 + 1 + 0 + fib(1) + fib(0) + fib(1) 

 
1 + 0 + 1 + 1 + 0 + 1 + 0 + 1 = 5 

 

 

 

 

 

 

Dry run of above function call - 

 

Fib (n) = n if n = 0 or n = 1 

Fib (n) = fib (n-1) + fib (n-2) for n >=2 

 



Lecture Notes 
 Page 8 
 

 

 

 


