

 1

Visual Basic Concepts

For

BCA 3rd Semester (Session 2017-20) Students

BY

ANANT KUMAR

MCA, M. Phil, M. Tech.

Faculty Member

Department of Computer Science

J. D. Womenôs College, Patna

 2

Introduction to Visual Basic

Visual Basic is a high level programming language, which is evolved from ñBASICò

(Beginners All purpose symbolic Instruction Code).

BASIC was developed in the mid 1960ôs by Professor JOHN KEMENY &

THOMAS KURTZ of Dart-mouth College as a language for writing simple programs.

The main purpose of BASIC language was to help people learn how to program.

With the development of the Microsoft Windows Graphical User Interface (GUI) in

the late 1980ôs and the early 1990ôs the natural evolution of BASIC was Visual Basic,

which was created by Microsoft Corporation in 1991.

Until Visual Basic appeared, developing Microsoft Windows based application

was a different process but Visual Basic simplifies windows application development.

Since 1991, six (6) versions have been released but with the latest, VISUAL BASIC

6.0 appearing in September 1998.

The ñVisualò part refers to the method used to create the Graphical User

Interface (GUI).

The Visual Basic is an Event-Driven programming language. Due to its

Windows Interface, the users may click on a certain object randomly. So, each object

has to be programmed independently to be able to response to those actions (events).

Therefore, a Visual Basic program is made up of many sub-programs, each has its

own program, codes & each can be executed independently & at the same time, each

can be linked together.

Visual Basic program are created in an Integrated Development Environment

(IDE). The IDE allows the programmer to create, run & debug Visual Basic program

very easily. IDE allows a programmer to create working programs in a fraction of

time.

The process of rapidly creating an application is known as ñRapid Application

Developmentò (RAD). Hence, Visual Basic is the worldôs most widely used RAD

language.

Opening Visual Basic
To open the Visual Basic, go through the following steps: -

StartprogramVisual studioVisual Basic 6.0 ¾

When Visual Basic is loaded, the ñnew projectò dialog box is displayed

 3

Figure 1

The ñNew projectò dialog box allows the programmer to choose what type of Visual

Basic programmer to create a standard executable program.

The ñNew project dialog box has three steps i.e. is NEW, EXISTING &

RECENT. The ñNewò tab is selected by default. ñExistingò & ñRecentò tab is used to

open the old projects.

After selecting ñStandard.EXEò, clicks on the ñopenò button.

After that, the Visual Basic screen is opened. There are several windows opened on

the Visual Basic Screen-----

Figure 2

Project: -
Project is a container of holding forms. Every program in Visual Basic is treated as

project. Only one project can be opened at a time. One project may have one or more

than one form. By default, Visual Basic provides one

ñFormò in a project, we can add more than one form according to our need from

the ñproject menuò, by choosing ñAdd formò option. The Extension of Visual basic

project is ñ.vbpò.

 4

Figure 3

Form:-
Form is a container of holding different controls (like text box, label box, command

button etc.). It is used to create or design the interface for the user to handle the

program.

The ñformò consists with several ñGridò or ñpixelò. It has ñgrayò color by

default. Any control can be placed on the form according to the pixel position. Each

pixel has unique dimension.

Any control can be placed on the ñformò by the drag & drop feature. Maximum

255 controls can be placed on a ñformò.

Each & every form is saved by the unique name having the extensionò. frmò.

Figure 4

Project Explorer: -
It is an exploring window which displays the listing of all the ñformò within the

project.

 5

Figure 5

It has three buttons----

1. View Code: -
By clicking on this button, we can go into the CODE WINDOW of selected ñformò.

ñCode Windowò is a place in which we write the program code of Visual Basic.

Figure 6

The ñCode Windowò has two partsð

The ñleft partò shows the listing of all the controls placed over the form. And,

the ñright partò shows the listing of all the events of the selected controls.

Since, each control has several events, so we can program in different events

independently. Visual Basic automatically provides a ñprocedureò for each event

separately.

A ñprocedureò is a sub program, which consists with control name & its event

name. It performs a special task after performing that action. It means, any procedure

is called automatically whenever we perform that action.

Ex: -

Here, the ñSubò keyword indicates that it is a Procedure.

2. View Object: -

 6

By clicking on this button, we can go into the ñDesign Modeò.

3. Toggle Button: -

It is ñON/OFFò switch. By clicking this button once, it shows in exploring form and

by another clicking it shows in non-exploring form.

 Properties Window: -
It is a window, which shows the listing of all properties of all properties of selected

controls.

Figure 7

The properties window has two parts: -

 The ñleft partò shows the name of all properties and the ñright partò shows the

value settled corresponding to the properties by default.

 We can change the value of any properties, as we desired. Any changes made to

the properties window is affected On-line. It means it can be seen in the design mode.

Properties window can display the properties of only one control at a time. The

shortcut key for properties window is ñF4ò.

Form layout Window: -
This window is used to set the position of form appearing in run mode on the screen.

Figure 8

Data Type: -

 7

Data types are predefined keywords, which are used to declare the type of the variable

within the program. So that, Compiler or Interpreter can understand that which

variable can store what types of constant values.

 There are various data types supported by Visual Basic------------

Data type Storage size Range

Byte 1 byte 0 to 255

Boolean 2 byte True or False

Integer 2 byte -32,768 to +32,767

Long 4 byte -2,147,483,648 to +2,147,483,647

Single 4 byte -3,402823E38 to -1,401298E-45 for negative

value

1,401298E-45 to 3,402823E38 for positive

value

Double 8 byte -1,797693613486232E08 to

4,94065645841247E-324 for negative value

& from 4,94065645841247E -324 to

1,79769313486232E308 for positive value

Currency 8 byte -922,337,203,685,477,5808 to

922,337,203,685477,5807

Decimal 12 byte -79,228,192,514,264,337,593,543,950,335 to

79,228,162,514,264,337,593,543,950,335

Date 8 byte January 1,100 to December 31, 9999

Object 4 byte Any object reference

String (variable

length)

10 byte + String length 0 to approx. 2 billion.

String (fixed length) Length of

string

1 to approx. 65,400

Variant (numeric) 16 byte Any numeric value up to the range of a

Double

Variant (character) 22 byte + Same range as for variable length string.

Variable: -
Variable are those quantity whose value can be changed within the program.

 Variables are used to store the constant value in memory. The memory space is

allocated by the variable name. So, variables must be used in programming languages

to store the constant values.

 Constant values cannot be stored directly in memory.

Syntax: -

 Dim variable As Data type

Ex: -

 Dim A As Integer

 8

 Dim A As Integer, B AS String

Dim a, b, c As Integer

In this case, the variable ñaò & ñbò is remaining as default data type (variant). Only

ñcò is declared as Integer.

 Hence, the Visual Basic also provides the facility to use the variables without

their declaration.

 When we use the variables without their declaration then the variables are

treated as ñvariantò data type default.

 The ñvariantò data type can store any type of data.

Ex: -

 A = 10 Ý Numeric variant (16 byte)

 A = ñRamò Ý Character variant (22 byte)

Here, ñaò is declared as Integer. So, it takes only 2 bytes.

Operator: -
Operators are the instructions for the computer, which are used, in programming

languages to manipulate the operands (data) without any operator. We cannot

manipulate the inputted data.

 According to working prospective, the operator are categorized into following

categories ----

1. Arithmetical Operator

2. Relational or Comparison Operator.

3. Logical Operator

1. Arithmetical Operator: -

These operators are used to perform the arithmetical calculations.

 __

Operator Name | Symbol

 Addition | +

 Subtraction | -

 Multiplication | *

 Division | /

 Mod | Mod

2. Relational or Comparison Operator: -
These operators are used to establish the relation between two operands. It means, they

are used to compare two or more than two operands with each other. Thatôs why, it is

also known as Comparison operator.

 After comparison, it always returns Boolean Types value i.e. either TRUE or

FALSE.

 __

 9

 Operator Name | Symbol

 --

 Greater than | >

 Greater than equal to | >=

 Less than | <

 Less than equal to | <=

 Equal to | =

 Not equal to | <> or !=

3. Logical Operator: -
These operators are used to establish the relation between two or more than two

conditions. It means, they are used to combine two or more than two conditions with

each other.

 Operator Name | Symbol

 AND | AND

 OR | OR

 NOT | NOT

Toolbox: -
Toolbox is a container of holding different controls of Visual Basic. It is a media by

which e can place any controls on the form. Any control can be used on the form only

hen it is present in the toolbox.

 So, all the controls must be added to the toolbox before using on the form.

 Toolbox contains some controls by default & some extra controls are added to it

from the ñComponentò option of ñprojectò.

 The shortcut key for toolbox is ñCTRL+Tò.

Figure 9

Controls: -
Controls are the pre-defined objects, which are used to do program in Visual Basic

according to some events or actions.

 10

 Since, Visual Basic is an Event ïDriven programming language, so the controls

are used to design or create the Interface, which acts as the mediator between the user

and the application programs.

 Each control has several properties and event, which we can use according to

our need of program.

 Regarding Object ï oriented technique, when any controls present in the

Toolbox then it is treated as a ñCLASSò. We can place any number of any controls on

the form.

 When any control is placed on the form, then it is treated as the objects of

relative class. So, all the objects of relative class share the same events or properties.

 There are two types of controls supported by Visual Basic.

1. Intrinsic Control

2. Active ïX

1. Intrinsic Control: -

 All the controls, which are present in the toolbar by default, are known as Intrinsic

Control

 The Intrinsic controls are as follows: -----------

1. Arrow

2. Text box

3. Label box

4. Command button

5. List box

6. Combo box

7. Check box

8. Option box

9. Horizontal Scroll Bar

10. Vertical Scroll Bar

11. File List Box

12. Dir List Box

13. Drive List Box

14. Timer

15. OLE

16. Shape

17. Line

18. Data Control

2. Active ï X Control

All the controls, which are added to the toolbox externally, are known as Active ï X

Controls. There are several controls available in the Visual Basic, which exist in the

ñcomponentò option of ñprojectò menu. We can use any controls according to our

need.

 The Active ï X controls are categorized into three categories: ---------

1. ñ.ctlò

2. ñ.ocxò

3. ñ.dllò

 11

1. ñ.ctlò: -

It is created by the programmer.

2. ñ.ocxò: -

All the controls, which exist in the ñcomponentò option, are in the ñ.ocxò

3. ñ.dllò: -

The extension of class Module file is ñ.dllò.

INTRINSIC CONTROLS
1. Label Box: -

This control is used to display just only messages on the form in run time. Any

text written in the ñlabel boxò just appears as written on the ñformò in run mode.

 There are several properties supported by label box --------

1. Name

2. Caption

3. Back color

4. Fore color

5. Font

6. Top

7. Left, etc.

The ñNameò and ñCaptionò are the common properties of several controls. There are

some basic differences between ñNameò & ñCaptionò as follows ------

Name Property: -
The ñNameò property of any control specifies its identification within the

project. It means, any control is identified by its ñNameò within the project.

 The procedure of any control is preferred by its name and all the properties of

any control can be used by its name only.

 When we the change the name of any control then its procedure and properties

can be used through its changed name.

For Ex: -

The default name of the ñlabel boxò control is ñlabel1ò, and then its procedure is

created as follows-----------

Private sub label1_click ()

 Þ

 ----- Control name

 End sub.

Now, we change the name of Label Box from ñlabel1ò to ñL1ò. Then, the

procedure is created as follows ---------------

 12

Private sub L1_click ()

 -------- Þ

 ------ Control Name

 End sub.

 And, the properties of label box is also used by its changed name in code

window as follows-------

 L1.property = -----------------

 The ñnameò property can be changed by ñproperty windowò only.

Caption Property: -
It is also the most common property of most of the controls. This property

specifies the texts or messages visible on the controls.

 In another word, we can also say that the texts or messages, which appear on the

control, are known as its ñCAPTIONò.

 This property can be changed either through ñproperties windowò or through

ñcode windowò.

 The syntax of using any properties of any control in code window is as follows -

Control name. Property = value

Note: -

 The default event of ñlabel boxò is ñclickò.

2. Text Box Control: -
This control is used to enter some texts or values in the run mode. The ñcursorò

can exist in the ñText boxò. So, the ñText boxò is used for the entry purpose.

The most common properties of text box is as follows -------------

 (a). Name

 (b). Text (caption)

 (c). Back color

 (d). Fore color

 (e). Font

 (f). Top

 (g). Left

 (h). Appearance etc.

The default event of ñtext boxò is ñchangeò.

2. Command button: -
It is also an intrinsic control, which is used to perform any work by performing the

ñCLICKò action. Thatôs why, it is also known as Action Button. The most common

properties of Command Button are as follows: ---------

 (a). Name

 (b). Caption

 13

 (c). Back color

 (d). Font

 (e). Style

 (f). Top

 (g). Left

 (h). Enabled

 (i). Visible etc.

Note: -

1. To change the Back color of the Command Button, we must have to change

the ñStyleò in property in ñGraphicalò mode.

2. The ñFore colorò property is not supported by the ñCommand Buttonò.

3. The default event of command button is ñClickò.

Print Command/ Statement: -
This statement is used to print any message or text on the form.

 Syn: --

 PRINT ñMessageò

 PRINT ñMessageò & Values

 Ex: --

 PRINT ñWELCOMEò

 PRINT ñValue of a=ò & a

The ñPRINTò statement starts printing from TOP-LEFT position of form

 Each time, it breaks the line. It means, it prints vertically.

Note: -

 ñPRINTò command cannot be used in the ñloadò event.

PROG: -

 WAP TO PRINT A MESSAGE ñWELCOME TO V.B.ò ON THE FORM

AFTER CLICKING A COMMAND BUTTON.

 Figure 10

 14

Private Sub Command1_Click()

Print "WELCOME TO V.B."

End Sub

--

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Command1.Caption = "PRINT"

Command2.Caption = "EXIT"

Form1.Caption = "WELCOME TO V.B."

End Sub

ñLOADò event of form: ---
This event is activated automatically when the project goes into run mode. Any work,

which we want to perform automatically, must be written in the ñLoadò event of

ñformò.

Conditional Statements: -
 These statements are used to execute a set of statements on some condition. The given

condition must be of Boolean type i.e. it must return either ñTRUEò or ñFalseò.

 If the given condition is ñTRUEò then the statements within in the body are

executed otherwise, skipped out.

 There are three types of conditional statements in VB ---------

1. IF ï THEN ï ENDIF

2. IF ï THEN ï ELSE ï ENDIF

3. SELECT CASE ï ENDSELECT

1. IF ï THEN ï ENDIF: -
It is single conditional checking statement, which has only one body that is known as

ñTRUE PARTò.

 Syn: -

 If (condition) THEN

 End if

If the condition is true then the statements are executed. Otherwise, whole body is

skipped.

2. IF ï THEN ï ELSE - ENDIF: -
It is dual conditional checking statement, which have two bodies. One is known as

ñTRUE PARTò & another is known as ñFALSE PARTò.

 15

 Syn: -

 ------------------ Ý TRUE PART

Else

 ------------------ ÝFALSE PART

 End if

If the condition is ñTRUEò then the true part is executed otherwise false part is

executed.

3. SELECT CASE ï END SELECT: -
It is multiple conditional checking statements, which are used to execute one

condition/option out of several options at a time. It is generally used in MENU ï

DRIVEN program.

 Syn:-

 SELECT CASE Variable

 Case constant1:

 Case constant 2:

 Case ELSE ÝOptional

 End Select

The number of ñCASEò within the ñSELECT CASEò depends upon the options

present in the menu. One ñCASEò can do only one work.

 The ñCASE ELSEò part is optional which is executed automatically whenever

user inputs wrong choice/or out of range choice. So, it is generally used to display

error messages on the screen.

NESTING OF IF ï STATEMENT: -
Using of one IF ï Statement within another is known as NESTING of IF ï

STATEMENT.

 Ex: -

 If (condition) then

 16

 If (condition) then

 End if

 End if

In this case, the compiler/interpreter checks the condition of outer ñIFò at first.

If the condition is TRUE then it checks the condition of INNER ï IF Statement.

NESTING OF IF ï ELSE ï STATEMENT: -
 Ex: -

 If (condition) THEN

 If (condition) THEN

 ELSE

 End if

. Else

 End if

LOOPING STATEMENTS: -
Those statements, which are used to execute a set of statements again & again until the

given condition remains TRUE, are known as LOOPING STATEMENTS.

 In another word, we can also say that these statements are used to repeat a

certain task until a certain period. Thatôs why; it is also called REPETATIVE

STATEMENTS or ITERATIVE STATEMENT.

There are several types of looping statements supported by V.B -----------------

1. FOR ï LOOP

2. WHILE ï LOOP

3. DO ï WHILE ï LOOP

4. DO ï UNTIL LOOP

5. DO ï LOOP ï WHILE

6. DO ï LOOP- UNTIL

 17

1. FOR LOOP: -
It is looping statement which can repeat the set IF statements written within its body

until the given condition remains true.

 Syn: -

 For variable = initial value to final value STEP <step value>

 Next variable

The ñInitial valueò indicates that from which value the loop will be started.

 The ñFinal valueò indicates that until which value, the loop will be repeated.

 The ñSTEPò is the keyword and ñstep valueò indicates that by which values the

looping variable is increased on decreased after each repetition. If it is not mentioned

than the FOR ï LOOP variable is increased by 1 by default.

 Ex: - Output

 For a =1 to 5 | 1

 Print a | 2

 Next a | 3

 | 4

 | 5

 --

Ex: - Output

 For a = 5 to 1 step -1 | 5

 Print a | 4

 Next a | 3

 | 2

 | 1

2. WHILE LOOP: -
It is also looping statement, which can repeat the statements until some

condition is satisfied.

 Syn: -

 While (condition)

 Increment/ Decrement part

 Wend

 Ex: - Output

 A =1 | 1

 While (A<=5) | 2

 Print A | 3

 A= A+1 | 4

 18

 ` Wend | 5

Ex: - Output

 A= 1 | 5

 While (A<=5) | 4

 Print A | 3

 A = A-1 | 2

 Wend | 1

The initial value of WHILE - LOOP variable must be assigned above the WHILE ï

LOOP. The condition is mentioned with the loop, which specifies that how much

times the loop will be repeated. And the I/D part is mentioned within the body of

WHILE ï LOOP. If it is not mentioned, then the loop becomes infinite loop

3. D0 ï WHILE- LOOP: -
It is also looping statement, which is same as the WHILE ï LOOP. But the

difference between WHILE - LOOP and DO ï WHILE LOOP is that WHILE ï LOOP

cannot be terminated before reaching on given condition but the DO ï WHILE LOOP

can be terminated on some condition before reaching on given condition.

 The DO ï WHILE, DO ï UNTIL, DO ï LOOP ïWHILE and DO ï LOOP ï

UNTIL is the looping statements of DO ï LOOP series.

 Syn: -

 Do while (condition)

 Increment/Decrement part

 Loop

 Ex: - Output

 A = 1 | 1

 Do while (A<=5) | 2

 Print A | 3

 A=A+1 | 4

 Loop | 5

 Ex: - | Output

 A = 5 | 5

 Do while (A>=1) | 4

 Print A | 3

 A = A-1 | 2

 Loop | 1

PROG: -

 WAP TO INPUT A NUMBER AND FINDS ITôS SQUARE.

 19

Figure 11

Private Sub Command1_Click ()

Dim a As Integer

a = Val (Text1.Text)

a = a * a

Text2.Text = a

End Sub

Private Sub Command2_Click ()

End

End Sub

Private Sub Form_Load ()

Label1.Caption = "Enter any number"

Label2.Caption = "Square of No"

Text1.Text = ""

Text2.Text = ""

Command1.Caption = "square"

Command2.Caption = "exit"

End Sub

PROG: -

 WAP TO INPUT A NUMBER AND PRINT THE GREATEST DIGIT.

.

 20

Figure 12

Private Sub Command1_Click ()

Dim NUM As Integer, A As Integer, MAX As Integer

MAX = 0

NUM = Val (Text1.Text)

While (NUM > 0)

A = NUM Mod 10

If (A > MAX) Then

MAX = A

End If

NUM = Int(NUM / 10)

Wend

Text2.Text = MAX

End Sub

--

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Label1.Caption = "ENTER ANY NO"

Label2.Caption = "GREATEST NO"

Form1.Caption = "GREATEST NO"

Text1.Text = ""

Text2.Text = ""

Command1.Caption = "OK"

Command2.Caption = "CANCEL"

End Sub

PROG: -

 WAP TO INPUT A NUMBER AND MAKE TWO NUMBERS FROM

THIS NUMBER BY TRUNCATING ALL EVEN AND ODD NUMBERS.

 21

Figure 13

Private Sub Command1_Click()

Dim a As Integer, b As Integer, s As Integer

a = Val(Text1.Text)

While (a > 0)

s = a Mod 10

If (s Mod 2 = 0) Then

Text2.Text = Str(s) + Text2.Text

Else

Text3.Text = Str(s) + Text3.Text

End If

a = Int(a / 10)

Wend

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Label1.Caption = "Enter any No"

Label2.Caption = "even No"

Label3.Caption = "odd"

Command1.Caption = "Result"

Command2.Caption = "Exit"

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

a = Val(Text1.Text)

End Sub

4. D0 ï UNTIL- LOOP: -
It is also a looping statement of DO ï LOOP series. It checks the condition for

falsity. It means, it checks the condition in negative and executes the body unless and

until the given condition evaluates to false.

When the condition is being TRUE, then the loop is terminated.

 Syn: -

` ` Do until (condition)

 22

 Increment/Decrement

 Loop

Ex: - Output

 A = 1 | 1

 Do until (a = 6) | 2

 Print A | 3

 A = A+1 | 4

`` ` Loop | 5

5. D0 - LOOP - WHILE: -
It is also a looping statement which must executes the statements at least once.

Like WHILE ï LOOP and DO ï WHILE ï LOOP, it is also check the condition for

true & repeats the body unless and until, the given condition remains TRUE.

 Syn: -

 Do

 Increment/Decrement

 Loop While (condition)

Ex: - Output

 A =1 | 1

 Do | 2

 Print Aô | 3

 A = A+1 | 4

 Loop While (a<=5) | 5

6. D0 - LOOP - UNTIL: -
It is also a looping statement which must executes the statements at least once.

But, it checks the condition for falsity. That is, it repeats the statement unless and until

the given condition remains false.

 Syn: -

 Do

 23

 Increment/Decrement

 Loop until (condition)

 Ex: - Output

 A =1 | 1

 Do | 2

 Print A | 3

 A = A+1 | 4

 Loop until (a =6) | 5

Exit Do and Exit For Statement.
ñExit Doò and ñExit Forò statement is used to terminate the loop on some

condition before satisfying the given condition.

The ñExit Doò statement is used to terminate the ñDO ï LOOPò.

And the ñExit Forò statement is used to terminate the ñFOR ï LOOPò on some

condition.

NOTE: -

ñWHILEò loop cannot be terminated on condition before satisfying the given

condition.

Syn: -

 Do while (condition)

 If (condition)

 Exit do

 End if

 Loop

 Ex: -

 For I = 0 to 10

 If (condition)

 Exit for

 End if

 Next I

 Ex:- Output

 24

 A =1 | 11

 Do while (A<=10) | 2

 Print A | 3

 If (A = 5) then | 4

 Exit do

 End if

 Loop

 Ex: - Output

 For I = 1 to 10 | 1

 Print I | 2

 If (I = 5) then | 3

 Exit for | 4

 End if | 5

 Next I

NESTING OF LOOPING STATEMENTS: -
Using of one loop statement within other loop statement is known as Nesting of

looping statements.

Ex: -

 For v = - - - to - - -

 For v1 = - - to - -

 - - - - - - -

 - - - - - - -

 Next v1

 - - - - - - -

 - - - - - - -

 Next v

Ex: -

 For v = - - to - -

 - - - - -

 - - - - -

 While (- - -)

 - - - - - -

 - - - - - -

 Wend

 - - - -- - -

 - - - - - -

 Next v

Using of Exit Do & Exit For in case of nesting
When we use these statements in case of nesting then only that loop is

terminated under which the ñExit Doò and ñExit forò is used.

Ex: - Output

 For i =0 to 3 | i = 0

 25

 Print ñi =ò &I | j = 0

 For j = 0 to 3 | j = 1

 Print ñj = ñ&j | i = 1

 If (j =1) then | j = 0

 Exit for | j = 1

 End if | i = 2

 Next j | j = 0

 Next I | j = 1

 | i = 3

 | j = 0

 | j = 1

 |____ ________

Ex: -

 Do while (- - - -)

 - - - - -

 - - - - -

 Do while (- - -)

 - - - -

 - - - -

 If (condition) then

 Exit do

 End if

 Loop

 If (condition) then

 Exit do

 End if

 Loop

INPUT BOX
It is a pre ï defined function which acts as a control, but it can be used only in the

code ï window. And after execution of code, a pre ï defined dialog box is appeared on

the screen. That is known as INPUT BOX.

It is used to take input of values in variables. There is one ñtext boxò and two

ñcommand buttonò is already placed on the Input box.

Syn: -

 Variable = input box (ñprompt messageò, ñtitle messageò, ñdefault

valueò)

ñPrompt messageò is a user defined message appeared on the Input box at run

time.

ñTitle messageò is also a user-defined message, which appears in the title bar of

Input box. It is optional; if it is not mentioned then the project name is appeared

in the title bar by default

The ñDefault valueò is also optional. We can set the default value in text box

appeared on the Input box as we desired.

 26

In another word, we can also say that Input box is just like the ñformò appeared

at run ï time after execution of code.

Ex: -

 V = Input box (ñENTER ANY NO.ò)

`Figure 14

Ex: -

 V = Input box (ñENTER ANY NOò, ñWELCOMEò,ò10ò)

Figure 15

After clicking on ñOKò button, the value is transferred to the variable and Input

box is closed.

After clicking on ñCANCELò button, the Input box is closed but value is not

transferred.

PROG: -

 WAP TO INPUT TWO NUMBERSFROM INPUT BOX AND PRINT

THEIR SUM.

 27

Figure 16

Dim A As Integer, B As Integer

Private Sub Command1_Click()

A = Val(InputBox("ENTER FIRST NO: -", "FIRST"))

B = Val(InputBox("ENTER SECOND NO: -", "SECOND"))

End Sub

--

Private Sub Command2_Click()

Dim C As Integer

C = A + B

Text1.Text = C

End Sub

--

Private Sub Command3_Click()

End

End Sub

--

Private Sub Form_Load()

Label1.Caption = "SUM"

Text1.Text = ""

Command1.Caption = "INPUT"

Command2.Caption = "SUM"

Command3.Caption = "EXIT"

End Sub

MESSAGE BOX: -
It is also a run ï time control which is used as a pre ï defined function in the

code ï window. It is generally used to display message at run ï time according to the

events or actions.

 Syn:-

 Msgbox (ñmessageò, Vb buttons + Vb symbol, ñtitle messageò)

 V = msgbox (ñmessageò, Vb buttons + Vb symbol, ñtitle messageò)

First argument is the ñPrompt messageò which is to be displayed on the message box.

 28

 The second argument is the buttons which we can select as desired. Visual

Basic supports the following buttons on the message box.

BUTTONS Returning Values

OK 1

CANCEL 2

ABORT 3

RETRY 4

IGNORE 5

YES 6

 NO 7

If no any buttons are selected then ñOKò button is placed by default.

 After clicking on the buttons at the run ï time, a fixed integer value

corresponding to each button is returned to the variable in the program. The returning

values are shown in the above table (starts from 1).

 The ñvb symbolò is also optional argument which we can select according to the

message like: - Ã ? ! Etc.

 The third argument is the title message which is to be displayed in the title bar

of message box.

 The Visual Basic buttons can be placed by fixed integer value also - - -

Buttons Value

Vb ok only 0

Vb ok cancel 1

Vb abort retry ignore 2

Vb yes no 3

- - - - - -

Ex: -

 V = msgbox (ñWELCOMEò)

Figure 17

 29

V = msgbox (ñwelcomeò, vb ok cancel + vb exclamation, ñHELLOò)

Figure 18

 To do programs on the button, we can use the returning value as follows - -

 If (v = 1) then

 - - - - -

 - - - - -

 End if

 If (v = 2) then

 - - - - -

 - - - - -

 End if

PROG: -

 WAP TO INPUT A NUMBER AND CHECK WHETHER IT IS EVEN

OR ODD. PRINT THE MESSAGE IN THE MESSAGE BOX.

Figure 19

Figure 20

Private Sub Command1_Click()

Dim M As Integer

M = Val(Text1.Text)

If (M Mod 2 = 0) Then

 30

MsgBox "NO. IS EVEN"

Else

MsgBox "NO. IS ODD"

End If

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Label1.Caption = "ENTER ANY NO"

Text1.Text = ""

Command1.Caption = "OKAY"

Command2.Caption = "CANCEL"

End Sub

PROG: -

 WAP TO PRINT, WHICH BUTTON IS PRESSED IN THE MESSAGE

BOX.

Figure 21

Private Sub Command1_Click()

Dim N As Integer

N = MsgBox("PRESS ANY BUTTON ", vbOKCancel, "Msgbox")

If (N = 1) Then

Label1.Caption = "OKAY BUTTON IS PRESSED"

End If

If (N = 2) Then

Label1.Caption = "CANCEL BUTTON IS PRESSED"

End If

End Sub

Private Sub Command2_Click()

Dim N As Integer

N = MsgBox("PRESS ANY BUTTON ", vbYesNo, "Msgbox")

If (N = 6) Then

Label1.Caption = "YES BUTTON IS PRESSED"

End If

If (N = 7) Then

Label1.Caption = "NO BUTTON IS PRESSED"

 31

End If

End Sub

Private Sub Command3_Click()

Dim N As Integer

N = MsgBox("PRESS ANY BUTTON ", vbAbortRetryIgnore, "Msgbox")

If (N = 3) Then

Label1.Caption = "ABORT BUTTON IS PRESSED"

End If

If (N = 4) Then

Label1.Caption = "RETRY BUTTON IS PRESSED"

End If

If (N = 5) Then

Label1.Caption = "IGNORE BUTTON IS PRESSED"

End If

End Sub

Private Sub Command4_Click()

End

End Sub

Private Sub Form_Load()

Command1.Caption = "MSG (OK)"

Command2.Caption = "MSG (Y/N)"

Command3.Caption = "MSG (A/R/I)"

Command4.Caption = "EXIT"

End Sub

--

Note: -

 To break the line of the prompt message in the message box, we have the

keyword ñvbcrlfò as follows: -

N = msgbox (ñINVALID ACCOUNT NO ñ&vbcrlf&ò PLEASE TRY AGAINò, VB

OK ONLY)

Figure 22

ARRAY
Array is a derived or user defined data type, which is used to store more than one

values of same data type. It means, it is used to store homogenous types of data.

 Hence, in the case, variable name is same for more than one values of same data

type.

 Syn: -

 Dim a (10) as integer

 32

 Dim b (10) as single

` Dim c (10) as string)

There are two types of arrays: -

1. Single Dimensional Array

2. Multi Dimensional Array

1. Single Dimensional Array: -
When one dimension is mentioned with an array variable than it is known as Single

Dimensional Array.

 Syn: -

 Dim variable (size) As Data type

 Ex: -

 Dim a (10) As Integer

 The memory is allocated by the array variable name either horizontally or

vertically and whole space is divided into different blocks according to the given size.

Each block is given the unique numerical number (starts from 0), known as INDEX

NUMBER / BLOCK NUMBER / POCKET NUMBER. Each block has the same size

and has capacity to hold one number at a time.

 Ex: -

 Dim a (5) As Integer

 0 1 2 3 4

 Now, the value is assigned or retrieved to or from an array variable, by using the

variable name and index number.

Assignment Retrieve

 a (2) = 10 | print a (2)

a (4) = 40 | print a (4)

The array variable can also be declared as follows: -

 Syn: -

 Dim variable (v1 to v2) As Integer

 Ex: -

 Dim a (0 to 9) As Integer

 Dim a (10 to 20) as integer

 10 11 12 13 14 15 16 17 18 19 20

 33

PROG: -

 WAP TO ASSIGNE 10 VALUES AUTOMATICALLY IN AN ARRAY

VARIABLE AND PRINT THEM.

Figure 23

Dim A(10) As Integer

--

Private Sub Command1_Click()

For I = 0 To 9

Text1.Text = Text1.Text + Space(3) + Str(A(I))

Next I

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

Dim N As Integer

Text1.Text = ""

N = 5

For I = 0 To 9

A(I) = N

N = N + 5

Next I

End Sub

 34

PROG: -

 WAP TO INPUT 10 NUMBERS THROUGH INPUT BOX IN AN

ARRAY AND PRINT THEM.

Figure 24

Dim A(10) As Integer

Private Sub Command1_Click()

For I = 0 To 9

A(I) = Val(InputBox("ENTER " & I + 1 & " VALUES IN ARRAY: -"))

Next I

End Sub

Private Sub Command2_Click()

For I = 0 To 9

Text1.Text = Text1.Text + Space(3) + Str(A(I))

Next I

End Sub

Private Sub Command3_Click()

End

End Sub

 35

PROG: -

 WAP TO INPUT 10 NUMBERS THROUGH TEXT BOX AND PRINT

THEM.

Figure 25

--

Dim a(10) As Integer, i As Integer

 --

Private Sub Command1_Click()

a(i) = Val(Text1.Text)

i = i + 1

Text1.Text = " "

Text1.SetFocus

If (i = 9) Then

Text1.Enabled = False

Command1.Enabled = False

End If

End Sub

Private Sub Command2_Click()

For i = 0 To 9

Text2.Text = Text2.Text + Space(3) + Str(a(i))

Next i

End Sub

Private Sub Command3_Click()

End

End Sub

 36

--

Private Sub Form_Load()

i = 0

End Sub

SET FOCUS, ENABLED & VISIBLE PROPERTIES
These are the most common useful properties of every control in Visual Basic.

Set focus

 This property is used to set the focus on that control.

 It means, by using ñset focusò property any control has got the control

(cursor / focus) over it.

 Syn: -

 Control name. Set focus

Enabled

 This property is used to set the activeness or inactiveness of any control. For

that, set the ñEnabledò property to TRUR or FALSE. If it is true, then any control can

do work at run time otherwise any control can not do any work.

 Syn: -

 Control name. Enabled = TRUE / FALSE

Visible

 This property also accepts Boolean value i.e. TRUE / FALSE.

 If it is TRUE then any control is seen at run time otherwise it is not seen

at run ï time.

 Syn: -

 Control name. Visible = TRUE / FALSE

ñMULTILINEò property of text box.
 By default, text box provides the feature of printing text in a single line. If we

want to print the texts in more than one line, set the ñmultilineò property to ñTRUEò

mode.

 It is read only property. It can be changed only from property windows.

 37

PROG: -

 WAP TO INPUT THREE NUMBERS AND PRINT THE LARGEST

AMONG THEM WITHOUT USING ARRAY AND THREE VARIABLES.

USE ONLY ONE VARIABLE. .

Figure 26

Dim NUM As Integer, MAX As Integer, L As Integer, I As Integer

Private Sub Command1_Click ()

I = I + 1

NUM = Val (Text1.Text)

Text1.Text = ""

Text1.SetFocus

If (MAX < NUM) Th en

MAX = NUM

End If

If (I = 3) Then

Command1.Enabled = False

End If

End Sub

Private Sub Command2_Click ()

Text2.Text = MAX

End Sub

--

Private Sub Command3_Click ()

 38

End

End Sub

Private Sub Form_Load ()

MAX = 0

I = 0

End Sub

PROG: -

 WAP TO INPUT TEN NUMBERS IN AN ARRAY ND SEARCH ANY

PARTICULAR NUMBER BY USING LINEAR SEARCHING & BINARY

SEARCHING.
LINEAR SEARCHING

Figure 27

Dim a(10) As Integer, s As Integer, i As Integer, c As Integer

Private Sub Command1_Click()

For i = 0 To 9

a(i) = Val(InputBox("ENTER " & i + 1 & " values in Array: -"))

Next i

For i = 0 To 9

Text1.Text = Text1.Text + Space(3) + Str(a(i))

Next i

Text2.SetFocus

End Sub

Private Sub Command2_Click()

s = Val(Text2.Text)

For i = 0 To 9

 39

If (a(i) = s) Then

Label2.Caption = "VALUE exist"

c = 1

End If

Next i

If (c = 0) Then

Label2.Caption = "Record doesnot exist"

End If

End Sub

--

Private Sub Command3_Click()

End

End Sub

Private Sub Form_Load()

c = 0

Text2.Text = ""

End Sub

--

BINARY SEARCHING

Figure 28

Dim a(10) As Integer, low As Integer, mid As Integer, i As Integer

Dim num As Integer

--

Private Sub Command1_Click()

For i = 0 To 9

a(i) = Val(InputBox("ENTER " & i + 1 & " value in array"))

Next i

For i = 0 To 9

Text1.Text = Text1.Text + Space (3) + Str(a(i))

Next i

Text2.SetFocus

End Sub

--

Private Sub Command2_Click()

num = Val(Text2.Text)

 40

While (low <= high And num <> a(mid))

If (num < a(mid)) Then

high = mid - 1

Else

low = mid + 1

End If

mid = (low + high) / 2

Wend

If (num <> a(mid)) Then

Label2.Caption = "Record exist"

Else

Label2.Caption = "Record doesnot exist"

End If

End Sub

Private Sub Command3_Click()

End

End Sub

--

Private Sub Form_Load()

low = 0

high = 9

mid = 0

mid = (low + high) / 2

End Sub

--

PROG: -

 WAP TO INPUT TEN NUMBERS AND SORT THEM.

Figure 29

Dim a(10) As Integer, i As Integer, j As Integer, t As Integer

Private Sub Command1_Click()

For i = 0 To 9

a(i) = Val(InputBox("Enter value in array"))

Next i

For i = 0 To 9

Text1.Text = Text1.Text + Space(2) + Str(a(i))

 41

Next i

End Sub

--

Private Sub Command2_Click()

For i = 0 To 9

For j = i + 1 To 9

If (a(i) > a(j)) Then

t = a(j)

a(j) = a(i)

a(i) = t

End If

Next j

Next i

End Sub

Private Sub Command3_Click()

For i = 0 To 9

Text2.Text = Text2.Text + Space(2) + Str(a(i))

Next i

End Sub

--

Private Sub Command4_Click()

End

End Sub

--

PROG: -

 WAP TO INPUT 10 NUMBERS IN TWO ARRAYS AND MERGE

THEM AND ALSO MAINTAIN THE ORDER IN ASCENDING ORDER.

Figure 30

Dim a(10) As Integer, b(10) As Integer, c(20) As Integer

Private Sub Command1_Click()

For i = 0 To 9

a(i) = Val(InputBox("Enter no in first array: -" & Str(i + 1)))

 42

Next i

For i = 0 To 9

b(i) = Val(InputBox("Enter no in second array: -" & Str(i + 1)))

Next i

End Sub

Private Sub Command2_Click()

Dim j As Integer

For i = 0 To 19

If i <= 9 Then

c(i) = a(i)

End If

If i > 9 Then

c(i) = b(j)

j = j + 1

End If

Next i

'sorting starts from here

For i = 0 To 19

For j = i + 1 To 19

If c(i) > c(j) Then

t = c(j)

c(j) = c(i)

c(i) = t

End If

Next j

Next i

End Sub

Private Sub Command3_Click()

For i = 0 To 9

Text1.Text = Text1.Text + Space(2) + Str(a(i))

Next i

For i = 0 To 9

Text2.Text = Text2.Text + Space(2) + Str(b(i))

Next i

For i = 0 To 19

Text3.Text = Text3.Text + Space(2) + Str(c(i))

Next i

End Sub

Private Sub Command4_Click()

End

End Sub

PROG:-

 WAP TO INPUT SOME NUMBERS IN AN ARRAY AND SEARCH

ANY PARTICULAR NUMBER. IF IT DOESNOT EXIST THEN INSERT IT

IN THE ARRAY AT ITS PROPER PLAC E.

 43

Figure 31

Dim a(10) As Integer, i As Integer, n As Integer, f As Integer

Private Sub Command1_Click()

a(i) = Val(Text1.Text)

n = i

i = i + 1

Text1.Text = ""

Text1.SetFocus

If i = 9 Then

Command1.Enabled = False

Text1.Enabled = False

End If

End Sub

Private Sub Command2_Click()

Dim num As Integer, f1 As Integer, x As Integer

f1 = 0

num = Val(InputBox("Enter no to search: -"))

For i = 0 To n

If (a(i) = num) Then

MsgBox "No is found at " & Str(i) & "Index"

f1 = 1

Exit For

End If

Next i

If (f1 = 0) Then

x = MsgBox("Do U want to insert: -", vbYesNo + vbQuestion)

If x = 6 Then

For i = 0 To n

If (a(i) > num) Then

While (n >= i)

a(n + 1) = a(n)

n = n - 1

Wend

a(i) = num

f = 2

n = 9

 44

Exit For

End If

Next i

End If

End If

If x = 7 Then

End

End If

End Sub

Private Sub Command3_Click()

If f = 1 Then

For i = 0 To n

Text2.Text = Text2.Text + Space(2) + Str(a(i))

Next i

End If

If f = 2 Then

For i = 0 To n

Text3.Text = Text3.Text + Space(2) + Str(a(i))

Next i

End If

End Sub

Private Sub Command4_Click()

End

End Sub

Private Sub Form_Load()

i = 0

n = 0

f = 1

End Sub

PROG: -

WAP TO INPUT SOME NUMBER IN AN ARRAY AND DELETE THE

NUMBER ACCORDING TO USERôS CHOICE.

 45

Figure 32

Dim a(10) As Integer, n As Integer

Private Sub Command1_Click()

For i = 0 To 9

a(i) = Val(InputBox("Enter " & Str(i + 1) & "number in array: -"))

Next i

End Sub

Private Sub Command2_Click()

Dim num As Integer, j As Integer, i As Integer, c As Integer

c = 0

num = Val(InputBox("Enter no to delete: -"))

For i = 0 To n

j = i

If (a(i) = num) Then

While (j <= n)

a(j) = a(j + 1)

j = j + 1

Wend

c = 1

n = n - 1

Exit For

End If

Next i

If c = 0 Then

MsgBox "NO. doesnôt exist"

End If

End Sub

Private Sub Command3_Click()

If n = 9 Then

For i = 0 To n

Text1.Text = Text1.Text + Space(1) + Str(a(i))

Next i

End If

If n = 8 Then

For i = 0 To n

 Text2.Text = Text2.Text + Space(1) + Str(a(i))

 Next i

 46

 End If

 End Sub

Private Sub Command4_Click()

End

End Sub

Private Sub Form_Load()

n = 9

End Sub

ñMULTI- DIMENSIONAL ARRAY: -
When more than one dimension is mentioned in an array variable, then it is

known as Multi ï Dimensional array.

They include Double Dimensional, Triple Dimensional etc.

Double Dimensional Array: -
 When two dimensions is mentioned with an array variable, and then it is known

as Double Dimensional array.

 Syn: -

 Dim variable (Size. Size) As Integer

The first ñsizeò stands for row value and the second ñsizeò stands for column

value.

The memory space is allocated by the DDA variable name and whole space is

divided into different row and column according to specified dimensions. Each row

and column is numbered by an index number, starts from Zero (0).

Ex: -

 Dim a (3, 3) As Integer

The memory space is allocated as follows - - - -

Figure 33

The combination of row and column is known as ñcellò. So, the data is stored in

DDA according to cell wise.

 47

 We can also declare the DDA as follows: - - - -

 Dim a (0 to 2, 0 to 2) As Integer

Figure 34

 Dim a (4 to 7, 4 to 7) As Integer

Figure 35

 PROG: -

 WAP TO INPUT SOME NUMBER IN DDA AND PRINT THEM.

Figure 36

 48

Dim a(3, 3) As Integer, i As Integer, j As Integer

--

Private Sub Command1_Click()

a(i, j) = Val(Text1.Text)

j = j + 1

Text1.Text = ""

Text1.SetFocus

If (j = 3) Then

i = i + 1

j = 0

End If

If (i = 3) Then

Command1.Enabled = False

Text1.Enabled = False

End If

End Sub

--

Private Sub Command2_Click()

For i = 0 To 2

For j = 0 To 2

Text2.Text = Text2.Text + Space(3) + Str(a(i, j))

Next j

Next i

End Sub

Private Sub Command3_Click()

End

End Sub

Private Sub Form_Load()

i = 0

j = 0

End Sub

--

PROG: -

 WAP TO INPUT SOME NUMBER IN 3X3 ORDER OF DDA AND

PRINT ITS TRANSPOSE.

Figure 37

 49

Dim a(3, 3) As Integer, b(3, 3) As Integer, i As Integer, j As Integer

Private Sub Command1_Click()

For i = 0 To 2

For j = 0 To 2

a(i, j) = Val(InputBox("Enter value in array"))

Next j

Next i

For i = 0 To 2

For j = 0 To 2

Text1.Text = Text1.Text + Space(1) + Str(a(i, j))

Next j

Next i

End Sub

Private Sub Command2_Click()

For i = 0 To 2

For j = 0 To 2

b(j, i) = a(i, j)

Text2.Text = Text2.Text + Space(1) + Str(a(j, i))

Next j

Next i

End Sub

Private Sub Command3_Click()

End

End Sub

Private Sub Form_Load()

Text2.Text = ""

End Sub

Dynamic Arrays: -

 Visual Basic provides the facility of dynamic arrays also. It is an array whose

memory is allocated at run ï time.

In another words, an array which is created at run ï time in memory is known as

Dynamic arrays. This process is known as Dynamic memory allocation.

The Dynamic array is declared by the ñRedimò statement as follows - - - -

Syn: -

 Redim variable (size)

But ñRedimò statement can be used only when the variable is declared by the

ñDimò statement.

Ex: -

 Dim a () As Integer

 Redim a (5) As Integer

Through Dynamic array, we can increase or decrease the size of an array at run

ï time.

 50

When the size of an array is increased then the previous value is overlapped and when

the size of an array is decreased then also the previous value is overlapped.

When we want to preserve the previous value in case of increment or decrement of

size of an array, then we use ñPRESERVEò keyword with Redim statement.

Syn: -

 Redim PRESERVE variable (size)

 PROG: -

 WAP TO INPUT 5 NUMBER IN A DMA AND PRINT THEM. AGAIN

ENTER 10 NUMBERS IN DMA AT RUN TIME AND PRINT ALL NEW

NUMBER.

Figure 38

Dim a() As Integer, n As Integer, i As Integer

Private Sub Command1_Click()

a(i) = Val(Text1.Text)

Text1.Text = ""

Text1.SetFocus

i = i + 1

If (i = n) Then

Command1.Enabled = False

Text1.Enabled = False

End If

End Sub

Private Sub Command2_Click()

For i = 0 To (n - 1)

Text2.Text = Text2.Text + Space(3) + Str(a(i))

Next i

End Sub

Private Sub Command3_Click()

n = 10

ReDim a(10)

Command1.Enabled = True

Text1.Enabled = True

 51

i = 0

Text1.SetFocus

End Sub

Private Sub Command4_Click()

End

End Sub

Private Sub Form_Load()

n = 5

ReDim a(n)

i = 0

End Sub

PROG: -

 WAP TO DELETE A NUMBER IN DMA.

Figure 39

Dim a() As Integer, n As Integer, i As Integer

Private Sub Command1_Click()

n = Val(InputBox(" How many No's do you want to insert: -"))

ReDim a(n)

Label1.Visible = True

Text1.Visible = True

Text1.SetFocus

Command1.Enabled = False

End Sub

Private Sub Command2_Click()

a(i) = Val(Text1.Text)

i = i + 1

Text1.Text = ""

Text1.SetFocus

If i = n Then

Command2.Enabled = False

Text2.Enabled = False

End If

 52

End Sub

Private Sub Command3_Click()

For i = 0 To n - 1

Text2.Text = Text2.Text + Space(2) + Str(a(i))

Next i

End Sub

Private Sub Command4_Click()

Dim num As Integer, x As Integer, f As Integer

f = 0

num = Val(InputBox("Enter No to delete: -"))

For i = 0 To n - 1

If a(i) = num Then

f = 1

x = MsgBox("Number found " & vbCrLf & "Do U want to delete it", vbYesNo + vbQuestion)

If x = 6 Then

While (i <= n - 1)

a(i) = a(i + 1)

i = i + 1

Wend

n = n - 1

End If

If x = 7 Then

End

End If

End If

Next i

If f = 0 Then

MsgBox "Number not found"

End If

End Sub

Private Sub Command5_Click()

End

End Sub

Private Sub Form_Load()

Label1.Visible = False

Text1.Visible = False

i = 0

End Sub

CONTROL ARRAY
It is a combination of more than one control having same name. The control

must be of same group.

In another words, we can also say that an array of controls having same name

and same group are known as Control array.

Foe ex: -

 We can create the control array of ñcommand buttonò, text, and

label box separately. All the command buttons are of the same group.

 53

Like, simple array, the control array is also assigned a unique number starts

from Zero (0), known as ñindexò number to identify the controls at run ï time because

all the controls have the same name. So, all of them share the same procedure.

To create control array of any controls, at first place any control on the ñformò

from toolbox and now select that control, copy it and then paste it.

 After pasting, the VB asks a message ñDO YOU WANT TO CREATE

CONTROL ARRAYò FIRST TIME, CLICK ON ñYESò button then the control

appear on the form. Now paste the control as much time as you want controls.

For ex: -

 If we want to create the control array of command button as follows - - -

Figure 40

In the case, all the command buttons share the same procedure call on click. The

procedure is as follows - -

 Private sub command_click (Index as Integer)

 - - - - - - - -

 - - - - - - - -

 End sub

When we click on any control array at run ï time, then its index ï number is

transferred into the procedure in ñIndexò variable.

 Now, we can use this index number in code window to write code for each

control separately as follows - -

 If index = 0 then

 - - - - - - - -

 - - - - - - - -

 End if

 If index = 1 then

 - - - - - - -

 - - - - - - -

 End if

- - - - - - - - -

- - - - - -- - -

 End sub

 54

 In case of control array, any properties of control are accessed in the code

window as follows - - -

 Control name (index number). Property name = value

 Ex: -

 Command1 (0). Caption = ñokò

 Command1 (1). Caption = ñ- - -ò

 Command1 (2). Caption = ñ- - -ò

 Command1 (3). Caption = ñ- - -ò

PROG: -

 WAP TO DEMONSTRATE THE USE OF CONTROL ARRAY.

Figure 41

Figure 42

Private Sub Command1_Click(Index As Integer)

If Index = 0 Then

MsgBox "YOU HAVE PRESSED " & Str(Index) & " INDEX"

End If

If I ndex = 1 Then

MsgBox "YOU HAVE PRESSED " & Str(Index) & " INDEX"

End If

If Index = 2 Then

MsgBox "YOU HAVE PRESSED " & Str(Index) & " INDEX"

End If

If Index = 3 Then

MsgBox "YOU HAVE PRESSED " & Str(Index) & " INDEX"

End If

End Sub

 55

--

FRAME CONTROL
It is an intrinsic control, which is used for an interactive designing. It is also a

container of holding different controls i.e. we can place any control over the FRAME

control.

But the difference between FRAME and FORM is that frame is such types of

container which is placed over the FORM and holds any other controls excluding

ñformò. But ñFORMò is a container of holding other controls including ñFRAMEò and

ñFORMò is hold by the ñprojectò.

The symbol for frame control is .

Generally, those controls are grouped together by the frame controls which

perform the similar task.

The most common properties of ñframeò control is that - - - -

1. Name

2. Caption

3. Back color

4. Fore color

5. Font

6. Left

7. Top

8. Height

9. Width

10. Tool tip text etc.

PROG: -

 WAP TO MAKE A STANDARD CALCULATOR.

 56

Figure 43

Dim a As Integer, b As Integer, c As Integer, n As Integer

--

Private Sub Command1_Click(Index As Integer)

Dim I As Integer

If (Index <> 10 Or Index <> 11) Then

If (Val(Text1.Text) = 0) Then

Text1.Text = Index

Else

Text1.Text = Text1.Text + Str(Index)

End If

If Index = 10 Then

Text1.Text = "0"

End If

If Index = 11 Then

For I = 0 To 10

Text1.Text = ""

Command1(I).Enabled = False

Next I

End If

End If

End Sub

--

Private Sub Command2_Click(Index As Integer)

If Index = 0 Then

a = Val(Text1.Text)

n = 0

Text1.Text = ""

End If

If Index = 1 Then

a = Val(Text1.Text)

n = 1

Text1.Text = ""

End If

If Index = 2 Then

a = Val(Text1.Text)

n = 2

Text1.Text = ""

 57

End If

If Index = 3 Then

a = Val(Text1.Text)

n = 3

Text1.Text = ""

End If

If Index = 4 Then

b = Val(Text1.Text)

If (n = 0) Then

c = a - b

Text1.Text = Str(c)

End If

If (n = 1) Then

c = a + b

Text1.Text = Str(c)

End If

If (n = 2) Then

c = a * b

Text1.Text = Str(c)

End If

If (n = 3) Then

c = a / b

Text1.Text = Str(c)

End If

End If

End Sub

--

Private Sub Command3_Click()

Dim S As Integer, R As Integer

S = Val(Text1.Text)

R = Int(S / 10)

Text1.Text = Str(R)

End Sub

Private Sub Command4_Click()

For I = 0 To 10

Command1(I).Enabled = True

Next I

For I = 0 To 4

Command1(I).Enabled = True

Next I

End Sub

Private Sub Command5_Click()

End

End Sub

Private Sub Form_Load()

Form1.Caption = "CALCULATOR"

Text1.Text = "0"

End Sub.

COLOR FUNCTION: -
There are two types of color function supported by Visual Basic - - - - -

1. QBCOLOR ()

 58

2. RGB ()

1. QBCOLOR (): -

It is a pre ï defined color which takes a numerical argument 0 to 15 and returns

corresponding color. That is, it can return 16 colors.

 Syn: -

 QBCOLOR (Value)

 Þ

 0 -15

 Ex: -

 Text1. Text = QBCOLOR (4)

 Form1. Back color = QBCOLOR (3)

2. RGB ():

 It is also a pre ïdefined function which can return any combination of color.

That is, it can derive color.

 It accepts three numerical arguments corresponding to RED, GREEN & BLUE

ranging from 0 to 255.

 Syn: -

 RGB (R value, G value, B value)

 Þ Þ Þ

 0 to 255 0 to 255 0 to 255

 Ex: -

 Text1. Text = RGB (50, 100, 150)

 Form1. Back color = (RGB (40, 50, 60)

 Rather than, these two color functions, Visual Basic also provides the color

constant as follows - - - -

 Vbred, Vb green, Vb blue, Vb black, Vb orange etc.

 Ex: -

 Text1. Back color = Vb red

 Form1. Back color = Vb green

PROG: -

 59

 WAP TO CHANGE THE COLOR OF THE BACKSCREENOF FORM

UNTIL USERS WANTS.

Figure 44

Dim a As Integer

Private Sub Command1_Click()

Form1.BackColor = QBColor(a)

a = a + 1

If a = 15 Then

a = 0

End If

End Sub

Private Sub Form_KeyPress(KeyAscii As Integer)

If (KeyAscii = 13) Then

Command1_Click

End If

If KeyAscii = 27 Then

End

End If

End Sub

Private Sub Form_Load()

Command1.Visible = False

a = 0

Form1.Caption = "Screen saver press escape to stop"

Form1.Height = Screen.Height

Form1.Width = Screen.Width

End Sub

Note: -

 Set the ñkey previewò property of ñformò into the ñTRUEò mode from

properties window to work the key press event property.

SCROLL BAR BUTTON: -

 60

It is also an intrinsic control, which is used to move some texts or images with

respect to its spindle.

There are two types of scroll bar - - -

1. Horizontal Scroll Bar (HScroll 1)

Figure 45

2. Vertical Scroll Bar (VScroll 2)

Figure 46

 The most common & useful properties of Scroll bar is as follows - - - -

1. Name

2. Caption

3. Min

4. Max

5. Small change

6. Large Change

7. Value

8. Top

9. Left

10. Height

11. WIDTH

12. Tool tip text etc

 ̈Min: -

This property is used to set the minimum values of scroll bar.

 Syn: -

 HScroll1. Min = Value

 VScroll1. Min = Value

 Ex: -

 HScroll1. Min = 0

 VScroll1. Min = 10

 ̈Max: -

This property is used to move the position of spindle by clicking on the moving

buttons.

 Syn: -

 Hscroll1. Max = Value

 VScroll1. Max = Value

Ex: -

Hscroll1. Max = 100

VScroll1. Max = 200

 61

S̈mall Change: -

This property is used to move the position of spindle by clicking on the moving

buttons. It means, this property activates automatically whenever we click on left or

right moving buttons and spindle is moved according to the ñSmall Changeò value.

 Syn: -

 Hscroll1. Small Change = Value

 VScroll1. Small Change = Value

 Ex: -

 Hscroll1. Small Change = 10

 VScroll1. Small Change = 10

L̈arge Change: -

This property is used to move the position of spindle by clicking on the scroll

bar area. It means, it is activated automatically whenever we click on scroll bar area

and then spindle is moved with respect to the ñLarge Changeò value.

 Syn: -

 Hscroll1. Large Change = Value

 Vscroll1. Large Change = Value

 Ex: -

 Hscroll1. Large Change = 10

 Vscroll1. Large Change = 10

V̈alue: -

This property returns the current position value of the spindle between the

minimum & maximum value.

 Syn: -

 V = Hscroll1.Value

 V = Vscroll1.Value

Note: -The default event of scroll bar is ñchangeò.

 62

PROG: -

 WAP TO DERIVE THE DIFFERENT COLORS BY THE MIXING OF

THE VALUE OF R, G & B BY USING SCROLL BAR.

Figure 47

Dim r As Integer, g As Integer, b As Integer

Private Sub command1_Click()

End

End Sub

--

Private Sub Form_Load()

HScroll1.Min = 0

HScroll1.Max = 255

HScroll2.Min = 0

HScroll2.Max = 255

HScroll3.Min = 0

HScroll3.Max = 255

HScroll1.SmallChange = 5

HScroll2.SmallChange = 5

HScroll3.SmallChange = 5

r = 0

g = 0

b = 0

End Sub

Private Sub HScroll1_Change()

r = HScroll1.Value

Text1.BackColor = RGB(r, g, b)

Label4.Caption = Str(r) & "%"

End Sub

Private Sub HScroll2_Change()

g = HScroll2.Value

Text1.BackColor = RGB(r, g, b)

Label5.Caption = Str(g) & "%"

End Sub

 63

--

Private Sub HScroll3_Change()

b = HScroll3.Value

Text1.BackColor = RGB(r, g, b)

Label6.Caption = Str(b) & "%"

End Sub

PROG: -

 WAP TO INCREASE OR DECREASE THE COMMAND BUTTONS

BY CLICKING ON THE MOVING BUTTON OF SCROLL BAR.

Figure 48

Private Sub Form_Load()

HScroll1.Min = 50

HScroll1.Max = 1000

HScroll1.SmallChange = 150

HScroll1.LargeChange = 250

End Sub

Private Sub HScroll1_Change()

Dim h As Integer

h = HScroll1.Value

Command1.Height = h

Command1.Width = h

End Sub

 64

LIST BOX & COMBO BOX.
The list box and combo box, both are also an intrinsic control.

 The ñList boxò control is used to display some contents at run ï time. It is not

used for entry purpose. It is used only to display some items.

 We can select one or more than one items from list box at run ï time. By

default, it provides the single selection of items.

 The most common useful properties of list box are as follows - - - - -

1. Name

2. Add item

3. List index

4. List

5. Remove item

6. Clear etc.

Ädd Item: -

 It is used to add the items in the list box, which can be seen at run ïtime.

 To use the ñAdd itemò in code window, we can use the following syntax - - - - -

 List1. Add item ñItem nameò [, index]

 Ex: -

 List1. Add item ñLuxò

 List1. Add item ñDenimò, 1

 ̈List Index: -

 This property returns the index number of the selected item.

 Syn: -

 V = List1. List Index

 ̈List: -

 It accepts an index number and returns the corresponding item in text format.

 Syn: -

 Dim S As string

 S = List1. List (index number)

 Ex: -

 S = List1. List (1)

 ̈Remove Item: -

 It is used to remove an item from the list. It accepts an index number and deletes

the corresponding item and shifts the lower item to up.

 Syn: -

 List1. Remove item (Index Number)

 ̈Clear: -

 It clears the list box. It means, it is used to remove all items at a time.

 Syn: -

 List1. Clear

 65

Combo box
 It is also an intrinsic control. It is combination of text box and list box both. It

means, we can enter items in combo box at run time by using the text box and we can

also display the items at run ï time by using its list box.

 It is displayed as - - - -

Figure 49

It holds a drop ï down menu, which is displayed after clicking on the button.

Its properties are also same as list box, which are as follows - - - - -

1. Name

2. Text

3. Add Item

4. List Index

5. List

6. Remove Item

7. Clear etc.

 ̈Text: -

 This property is used to set the text as default in text area in the combo box.

 Syn: -

 Combo1. Text = ñValueò

PROG: -

 WAP TO ADD SOME ITEMS IN THE LIST BOX AND AFTER

SELECTION OF ANY ITEM FROM LIST BOX, IT SHOULD BE ADDED IN

ANOTHER LIST BOX.

Figure 50

Private Sub Command1_Click()

End

End Sub

--

Private Sub Form_Load()

List1.AddItem "Lux"

 66

List1.AddItem "Denim"

List1.AddItem "Nivea"

List1.AddItem "Dove"

End Sub

Private Sub List1_Click()

List2.AddItem List1.List(List1.ListIndex)

End Sub

PROG: -

 WAP TO FORMAT THE TEXT OF THE TEXT BOX. CHANGE ITS

FONT, STYLE & SIZE.

Figure 51

Private Sub Combo1_Change()

Text1.FontSize = Val(Combo1.Text)

End Sub

Private Sub Combo1_Click()

Text1.Font.Size = Val(Combo1.List(Combo1.ListIndex))

End Sub

Private Sub Command1_Click()

Text1.Text = ""

Text1.SetFocus

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

For i = 0 To 50

List1.AddItem Screen.Fonts(i)

Next i

List2.AddItem "regular"

List2.AddItem "Bold"

List2.AddItem "Italic"

List2.AddItem "Underline"

 67

For i = 8 To 30 Step 2

Combo1.AddItem i

Next i

Combo1.Text = "8"

End Sub

Private Sub List1_Click()

Text1.Font = List1.List(List1.ListIndex)

End Sub

Private Sub List2_Click()

Dim n As Integer

n = List2.ListIndex

If (n = 0) Then

Text1.FontBold = False

Text1.FontItalic = False

Text1.FontItalic = False

Text1.FontUnderline = False

End If

If (n = 1) Then

Text1.FontBold = True

End If

If (n = 2) Then

Text1.FontItalic = True

End If

If (n = 3) Then

Text1.FontUnderline = True

End If

End Sub

CHECK BOX AND RADIO BUTTON (OPTION BUTTON)

 ̈Check box
It is an intrinsic control, which is used for multiple selections. It means, we can

select more than option out of several option from the check box. It is square () in

space. It is ON / OFF switch i.e. by once click, the option is activated and another

click the option is deactivated.

 Itôs most common useful features are - - - - - -

1. Name

2. Caption

3. Back color

4. Fore color

5. Font

6. Top

7. Left

8. Height

9. Width

10. Value etc.

 68

 ̈Value

 This property is used to identify whether the check box is ON or OFF.

 If the check box is selected (ON) then it returns TRUE (1) otherwise, it

returns FALSE (0).

 It is used in code window as follows - - - - - -

 If (check1. value = True) then

 - - - - - - - - -

 - - - - - - - - -

 Else

 --

 If (check1. value = 1) then

 - - - - - - - - -

 - - - - - - - - -

 Else

 ̈Radio Button (Option Button)
 It is also an intrinsic control, which is used to for the single selection of items at

a time. It means, only one item can be selected out of several options at a time in

options buttons. It is circular () in shape.

 When one item is selected then another selected item is automatically deselected

in case of radio button.

 The common properties are same as the ñcheck boxò.

 The ñValueò property is used to identify whether the option button is selected or

not. If it is selected then ñvalueò property returns True (1), otherwise False (0).

 It is used in code window as follows - -- - - - -

 If (option1. value) then

 Þ - - - - - -

 (By default true)- - - - - -

 Else

 - - - - - - -

 - - - - - - -

 End if

 If (option1. value = 1) then

 - - - - -- - - - -

 - - - - - - - - - -

 Else

 - - - - - - - - - -

 - - - - -- - - --

 69

PROG: -

 WAP TO PERFORM THE FOLLOWING TASK THROUGH

PROGRAM BY USING CHECK BOX & RADIO BUTTON.

Figure 52

Private Sub Check1_Click()

If (Check1.Value = 1) Then

Text1.FontBold = True

Else

Text1.FontBold = False

End If

End Sub

Private Sub Check2_Click()

If (Check1.Value = 1) Then

Text1.Font.Italic = True

Else

Text1.Font.Italic = False

End If

End Sub

Private Sub Check3_Click()

If (Check1.Value = 1) Then

Text1.Font.Underline = True

Else

Text1.Font.Underline = False

End If

End Sub

Private Sub Command1_Click()

End

End Sub

Private Sub Option3_Click()

If Option1.Value Then

Text1.ForeColor = vbRed

 70

Else

Text1.BackColor = vbRed

End If

End Sub

Private Sub Option4_Click()

If Option1.Value Then

Text1.ForeColor = vbGreen

Else

Text1.BackColor = vbGreen

End If

End Sub

Private Sub Option5_Click()

If Option1.Value Then

Text1.ForeColor = vbBlue

Else

Text1.BackColor = vbBlue

End If

End Sub

PROG: -

 WAP TO PERFORM THE FOLLOWING TASK.

Figure 53

Private Sub Command1_Click()

For i = 0 To List1.ListCount

List2.AddItem List1.List(i)

Next i

End Sub

Private Sub Command2_Click()

List2.AddItem List1.List(List1.ListIndex)

End Sub

Private Sub Command3_Click()

List2.RemoveItem (List2.ListIndex)

End Sub

 71

Private Sub Command4_Click()

List2.Clear

End Sub

Private Sub Command5_Click()

Unload Me

End Sub

Private Sub Form_Load()

List1.AddItem "Amrita Arora"

List1.AddItem "Shilpa Ahetty"

List1.AddItem "Lara Dutta"

List1.AddItem "Priyanka Chopra"

List1.AddItem "Preity Zinta"

End Sub

PROG: -

 WAP TO PERFORM THE FOLLOWING TASK.

Figure 54

General

Dim r As Integer, g As Integer, b As Integer

Private Sub Check1_Click()

If (Check1.Value = 1) Then

Text1.FontStrikethru = True

Else

 72

Text1.FontStrikethru = False

End If

End Sub

Private Sub Check4_Click()

If (Check4.Value = 1) Then

Label4.Enabled = True

Label5.Enabled = True

Label6.Enabled = True

Label7.Enabled = True

Label8.Enabled = True

Label9.Enabled = True

End If

End Sub

Private Sub Combo1_Change()

Text1.FontSize = Val(Combo1.Text)

End Sub

Private Sub Combo1_Click()

Text1.Font.Size = Val(Combo1.List(Combo1.ListIndex))

End Sub

Private Sub Command1_Click()

End

End Sub

Private Sub Form_Load()

For i = 0 To 100

List1.AddItem Screen.Fonts(i)

Next i

List2.AddItem "REGULAR"

List2.AddItem "BOLD"

List2.AddItem "ITALIC"

List2.AddItem "UNERLINE"

For i = 8 To 50 Step 2

Combo1.AddItem (i)

Combo1.Text = "8"

Next i

Label4.Enabled = False

Label5.Enabled = False

Label6.Enabled = False

Label7.Enabled = False

Label8.Enabled = False

Label9.Enabled = False

HScroll1.Min = 0

HScroll1.Max = 255

HScroll2.Min = 0

HScroll2.Max = 255

HScroll3.Min = 0

HScroll3.Max = 255

HScroll1.SmallChange = 5

HScroll2.SmallChange = 5

HScroll3.SmallChange = 5

 73

End Sub

Private Sub HScroll1_Change()

r = HScroll1.Value

If (Option1.Value = 1) Then

Text1.ForeColor = RGB(r, g, b)

Label7.Caption = Str(r) & "%"

Else

Text1.BackColor = RGB(r, g, b)

Label7.Caption = Str(r) & "%"

End If

End Sub

Private Sub HScroll2_Change()

g = HScroll2.Value

If (Option1.Value = 1) Then

Text1.ForeColor = RGB(r, g, b)

Label8.Caption = Str(r) & "%"

Else

Text1.BackColor = RGB(r, g, b)

Label8.Caption = Str(g) & "%"

End If

End Sub

Private Sub HScroll3_Change()

b = HScroll3.Value

If (Option1.Value = 1) Then

Text1.ForeColor = RGB(r, g, b)

Label9.Caption = Str(r) & "%"

Else

Text1.BackColor = RGB(r, g, b)

Label9.Caption = Str(b) & "%"

End If

End Sub

Private Sub List1_Click()

Text1.Font = List1.List(List1.ListIndex)

End Sub

Private Sub List2_Click()

Dim n As Integer

n = List2.ListIndex

If n = 0 Then

Text1.FontBold = False

Text1.FontItalic = False

Text1.FontUnderline = False

End If

If n = 1 Then

Text1.FontBold = True

End If

If n = 2 Then

Text1.FontItalic = True

End If

 74

If n = 3 Then

Text1.FontUnderline = True

End If

End Sub

Private Sub Option3_Click()

If Option1.Value Then

Text1.ForeColor = vbRed

Else

Text1.BackColor = vbRed

End If

End Sub

Private Sub Option4_Click()

If Option1.Value Then

Text1.ForeColor = vbBlue

Else

Text1.BackColor = vbBlue

End If

End Sub

Private Sub Option5_Click()

If Option1.Value Then

Text1.ForeColor = vbGreen

Else

Text1.BackColor = vbGreen

End If

End Sub

PICTURE BOX & IMAGE BOX
Both are intrinsic control, used to store the picture or image box files. The

extension may be ñ. bmpò, ñ. jpgò, ñ. jpegò, ñ. gif. ñ. wmfò etc.

The main difference between picture box and image box regarding storing is

that if the ñSTRECHò property of ñImage boxò is ñFALSEò then the box is adjusted

according to the picture file and if it is ñTRUEò then the picture file is adjusted

according to the box.

Where as if the ñAUTOSIZEò property of ñpicture boxò is ñFALSEò then the

picture file is adjusted according to box. And if it is ñTRUEò then box is adjusted

according to picture file.

Regarding the memory space, the image control takes less memory than the

picture control as well as picture control can be used to hold other objects also.

To load the picture file in picture control and image control we use the ñpictureò

property either from properties window or from code window.

To load the picture from code window, we write the code as follows - - - - - - - -

- - -

 Picture1. Picture = Load picture (ñpicture file name with full pathò)

 Image1. Picture = Load picture (ñpicture file name with full pathò)

ñLoad picture ()ò is a method supported by both control. It is a pre ï defined

method, which can be used only in the code window to load the picture file.

 75

PROG: -

 WAP TO LOAD THE PICTURE IN A PICTURE BOX AND COPY

THAT PICTURE IN ANOTHER PICTURE BOX.

Figure 55

Private Sub Command1_Click()

Picture1.Picture = LoadPicture("F:\PIC\untitled.bmp")

End Sub

Private Sub Command2_Click()

Picture2.Picture = Picture1.Picture

End Sub

Private Sub Command3_Click()

End

End Sub

 76

PROG: -

 WAP TO ADD THE LIST OF SOME PICTURE FILES IN A LIST BOX

& SHOWS THE PREVIEW OF EACH PICTURE IN A PICTURE BOX. AND

COPY THE DESIRED PICTURE IN AN IMAGE BOX.

Figure 56

Private Sub Command1_Click()

Image1.Picture = Picture1.Picture

End Sub

Private Sub Command2_Click()

End

End Sub

Private Sub Form_Load()

List1.AddItem "F:\pic\ann0a.jpg"

List1.AddItem "F:\pic\ann42a[1].jpg"

List1.AddItem "F:\pic\ann43v.jpg"

List1.AddItem "F:\pic\ann48d.jpg"

List1.AddItem "F:\pic\ann51s.jpg"

List1.AddItem "F:\pic\ann52a.jpg"

List1.AddItem "F:\pic\anna10.jpg"

List1.AddItem "F:\PIC\untitled.bmp"

End Sub

Private Sub List1_Click()

Picture1.Picture = LoadPicture(List1.List(List1.ListIndex))

